МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ ИМЕНИ ИМПЕРАТОРА ПЕТРА I»

ФАКУЛЬТЕТ ТЕХНОЛОГИИ И ТОВАРОВЕДЕНИЯ

Кафедра химии

«RИМИХ»

РАБОЧАЯ ТЕТРАДЬ С ЭЛЕМЕНТАМИ МЕТОДИЧЕСКИХ УКАЗАНИЙ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ПО ДИСЦИПЛИНЕ

для обучающихся заочной формы обучения

Ф.И.О. студента	
Факультет, курс	(полный / сокращенный)
(название специальност	и или направления подготовки)
	(шифр для выбора варианта заданий
	(номера заланий соответствующие шифру

Составители: доц. Перегончая О.В., доц. Дьяконова О.В., доц. Звягин А.А., доц. Данилова Г.Н.

Рабочая тетрадь для самостоятельной работы по дисциплине «Химия» для обучающихся заочной формы обучения инженерных специальностей и направлений подготовки на факультетах:

- ФАИ: 35.03.06 «Агроинженерия», 23.03.03 «Эксплуатация транспортно-технологических машин и комплексов», 23.05.01 «Наземные транспортно-технологические средства»;
- ФЗК: 20.03.02 «Природообустройство и водопользование».

Правила заполнения рабочей тетради

В процессе самостоятельного изучения дисциплины обучающийся выполняет задания, представленные в рабочей тетради, в соответствии с учебной программой курса. Перед выполнением заданий необходимо ознакомиться с теоретическим материалом и разобрать примеры, приведенные в данной методической разработке.

При оформлении рабочей тетради ответы на теоретические вопросы записываются кратко, ясно и по существу. При решении задач приводятся ход расчетов, математические преобразования и размерности величин. Рабочая тетрадь с полностью выполненными заданиями подписывается студентом и предоставляется на проверку в период экзаменационной сессии.

Вариант выполняемых заданий определяется по последним двум цифрам шифра (номера зачетной книжки) с помощью таблицы на странице 40. Например, шифру № 15 соответствует вариант № 15, задания: 6, 17, 28, 39, 50, 51, 62, 73, 84, 94.

При возникновении трудностей в ходе выполнения заданий следует обратиться на кафедру химии за консультацией, воспользовавшись контактной информацией:

Почтовый адрес: 394087, Воронеж, ул. Мичурина, д.1, ФГБОУ ВО ВГАУ, главный корпус, кафедра химии, 156 ауд.

Телефон: при наборе с городского / мобильного — 8(473) 253 87 97 (деканат ФТТ) добавочный кафедры химии 1155

e-mail: chem-vsau@mail.ru


При обращении с вопросом по электронной почте просьба предоставлять информацию о себе: направление подготовки, фамилию, имя и отчество, обратный адрес.

1. Основные понятия и законы химии

Контрольные задания № 1-10

Сформулируйте основные стехиометрические законы химии: сохранения массы при протекании химических превращений, постоянства состава веществ, простых кратных отношений, простых объемных превращений, закон Авогадро.

Дайте определе молекулярная масса, м условиях (н.у.), число А	ения понятий: поль, молярная	атом,	молекула,	относ	ительная	атомная и нормальных
` ,	-					

Сделайте расчеты и заполните для своего задания таблицу1.

Пример. Произвести расчеты, если известно, что оксид азота (IV) занимает объем 1,12 л (н.у.).

Ответ:

1) Молярная масса:

$$M_r$$
 (NO₂) = A_r (N) + 2 · A_r (O) = 14 + 2 · 16 = 46 a.e.m.,

 $M (NO_2) = 46 \Gamma / MOЛЬ.$

2) Количество вещества:
$$v = \frac{m}{M} = \frac{V}{V_m} = \frac{N}{N_A}$$
,

где m — масса вещества, M — молярная масса, N — число молекул, V — объем, занимаемый газом при н.у. (нормальные условия, т.е. температура 0°С и давление 1 атм (101,3 кПа)), N_A — число Авогадро, V_m — молярный объем газа при н.у..

$$v=rac{V}{V_m}=rac{1,12\,\pi}{22,4\,\pi/\mathrm{моль}}=0,05\,\mathrm{моль}$$
 .

- 3) Масса вещества: $m = v \cdot M = 0.05$ моль · 46 г/моль = 2.3 г.
- 4) Число молекул: $N = v \cdot N_A = 0.05$ моль $\cdot 6.02 \cdot 10^{23} = 3.01 \cdot 10^{22}$.

Таблица 1

№ задачи	Формула вещества	Молярная масса (<i>М</i>), моль/г	Масса вещества (<i>m</i>), г	Количество вещества (<i>v</i>), моль	Число молекул или формульных единиц (<i>N</i>)	Объем газа при н.у. (V), л
1	SO_2		6,4			
1	NaNO ₃				$6,02 \cdot 10^{21}$	-
2	NH_3					2,24
2	CuSO ₄			0,2		-
3	H_2S		68			
3	K ₂ CO ₃				$3,01\cdot10^{23}$	-
4	O_2					11,2
4	KCl			0,3		-
5	CO_2		11			
5	NH ₄ Cl				3,01·10 ²²	-
6	H_2		0,2			
U	CaHPO ₄				$6,02 \cdot 10^{22}$	-
7	N_2					1,12
/	$MnSO_4$			1,5		-
8	CO					2,8
0	KNO_3		10,1			-
9	NO					5,6
9	FeSO ₄			0,1		-
10	Cl ₂					1,4
10	ZnSO ₄			0,5		-

Вычисления:
2
2. Номенклатура и химические свойства неорганических
соединений
Контрольные задания № 11-20
πν
Дайте определения следующих понятий: простые вещества, сложные вещества, оксиды, основания, кислоты, соли.

Для своего задания в соответствии с таблицей 2 химических реакций с. 1) волой 2) киспотой 3) ше	составьте уравнения возможных

Для своего задания в соответствии с таблицей 2 составьте уравнения возможных химических реакций с: 1) водой, 2) кислотой, 3) щелочью, 4) солью, 5) основным оксидом, 6) кислотным оксидом, 7) амфотерным оксидом. Назовите исходные вещества и продукты реакций.

Пример. Исходные вещества: BeO и $Mg(OH)_2$. Составить уравнения возможных реакций.

Ответ:

ВеО – оксид бериллия, амфотерный оксид;

 $Mg(OH)_2$ – гидроксид магния, труднорастворимое основание.

- 1) С водой амфотерные оксиды и основания не взаимодействуют.
- 2) С кислотой:
 - а) BeO + 2HCl \rightarrow BeCl₂ + H₂O HCl хлороводородная (соляная) кислота, BeCl₂ хлорид бериллия, H₂O вода;

- б) $Mg(OH)_2 + 2HCl \rightarrow MgCl_2 + 2H_2O$ $MgCl_2$ хлорид магния.
- 3) Со щелочью:
 - а) в растворе: BeO + 2NaOH + $H_2O \rightarrow Na_2[Be(OH)_4]$ NaOH гидроксид натрия, $Na_2[Be(OH)_4]$ тетрагидроксобериллат натрия; при сплавлении: BeO + 2NaOH $\rightarrow Na_2BeO_2 + H_2O$ Na_2BeO_2 бериллат натрия;
 - б) основания со щелочами не взаимодействуют.
- 4) С солью:
 - а) для оксидов реакции с солями не характерны;
 - б) для труднорастворимых оснований реакции с солями не характерны.
- 5) С основным оксидом:
 - а) BeO + CaO \rightarrow CaBeO₂ СаО оксид кальция, CaBeO₂ бериллат кальция;
 - б) основания с основными оксидами не взаимодействуют.
- 6) С кислотным оксидом:
 - а) $BeO + SO_3 \rightarrow BeSO_4$ SO_3 оксид серы (VI), $BeSO_4$ сульфат бериллия;
 - б) $Mg(OH)_2 + SO_3 \rightarrow MgSO_4 + H_2O$ $MgSO_4$ сульфат магния.
- 7) С амфотерным оксидом:
 - а) амфотерные оксиды с амфотерными оксидами не взаимодействуют;
 - б) при сплавлении: $Mg(OH)_2 + ZnO \rightarrow MgZnO_2 + H_2O$ ZnO оксид цинка, $MgZnO_2$ цинкат магния.

Таблица 2

№ задачи	Исходные вещества	№ задачи	Исходные вещества
11	CaO	16	P_2O_5
11	HCl	10	Ba(OH) ₂
12	CO_2	17	CuO
12	NaOH	1 /	HNO ₃
13	SO_3	18	Al_2O_3
13	Ca(OH) ₂	10	K ₂ SiO ₃
14	MgO	19	ZnO
14	H_2SO_4	19	CuSO ₄
15	SO_2	20	SiO_2
13	КОН	20	NH ₄ Cl

Уравнения возможных реакций:

3. Способы выражения состава растворов

Контрольные задания № 21-30

_ 1	массовая доля,	•	•		

Произведите расчеты в соответствии с номером своего задания в таблице 3.

Пример. Дано: 100 мл 25%-ного раствора КОН, плотностью 1,23 г/мл. Произвести расчеты и заполнить пропуски в таблице.

Ответ: Вычислим:

1) массу раствора:

$$m_{\text{p-pa}} = \rho \cdot V = 1,23 \ \Gamma/\text{мл} \cdot 100 \ \text{мл} = 123 \ \Gamma.$$

2) массу растворенного вещества:

$$m_{\rm B} = \frac{\omega_{\rm B} \cdot m_{\rm p-pa}}{100 \%} = \frac{25\% \cdot 123 \ \Gamma}{100 \%} = 30{,}75 \ \Gamma$$

3) массу растворителя:

$$L = m_{\text{p-pa}} - m_{\text{в}} = 123 \ \Gamma - 30,75 \ \Gamma = 92,25 \ \Gamma = 0,09225 \ \text{к} \Gamma$$

4) молярную концентрацию:

$$c_{\rm M} = \frac{m_{\rm B}}{M \cdot V} = \frac{30,75 \; \Gamma}{56 \; \Gamma/{
m MOJB} \cdot 0,1 \; \pi} = 5,49 \; {
m MOJB}/{
m J}$$

5) моляльную концентрацию:

$$c_{
m m}=rac{m_{
m B}}{M\,\cdot\,L}\,=\,rac{30{,}75\ {
m \Gamma}}{56\ {
m \Gamma/моль}\cdot 0{,}09225\ {
m K}{
m \Gamma}}=5{,}95\ {
m моль/к}{
m \Gamma}$$

Таблица 3

№ задачи	Растворенное вещество	Масса растворенного вещества $(m_{\scriptscriptstyle \rm B})$, г	Масса растворителя (L) , Γ	Масса раствора ($m_{ m p-pa}$), г	Объем раствора (V), л	Плотность раствора ($ ho$),	Массовая доля $(\omega),\%$	Молярная концентрация $(c_{\scriptscriptstyle \mathrm{M}}),$ моль/л	Моляльная концентрация $(c_{ m m})$, моль/кг
21	H ₂ SO ₄			200		1,090	13		
22	HCl				0,1	1,095		5,5	
23	H_3PO_4			400		1,204	32		
24	NaOH		250			1,060			2,0
25	HNO_3		1000			1,093			2,5
26	CH ₃ COOH				3,0	1,017		2,0	
27	КОН		400			1,310			5,4
28	BaCl ₂			500		1,203	20		
29	Na ₂ CO ₃				0,3	1,103	10		
30	NaCl				0,25	1,150		3,6	

Вычисления:

4. Коллигативные свойства растворов

Контрольные задания № 31-40

 Какие свойства растворов называют коллигативными? Как меняются температура замерзания и температура кипения при образовании раствора относительно чистого растворителя? Сформулируйте физический смысл криоскопической и
эбулиоскопической констант. Что такое «антифриз»?

В соответствии с номером своего задания, используя данные таблицы 4, решите задачу:

Сколько граммов вещества надо растворить в 1 кг воды, чтобы приготовить антифриз с заданной температурой замерзания (табл.4). Криоскопическая константа воды K = 1,86 град·кг/моль.

Таблица 4

№ задания	Вещество	Температура замерзания, °С	№ задания	Вещество	Температура замерзания, °С
31	C ₂ H ₅ OH	-5	36	$C_3H_5(OH)_3$	-25
32	$C_2H_4(OH)_2$	-14	37	C_2H_5OH	-10
33	$C_3H_5(OH)_3$	-18	38	$C_2H_4(OH)_2$	-30
34	C ₂ H ₅ OH	-12	39	C ₃ H ₅ (OH) ₃	-16
35	$C_2H_4(OH)_2$	-8	40	$C_2H_4(OH)_2$	-32

Пример. Дано: вещество $C_2H_4(OH)_2$ – этиленгликоль, температура замерзания раствора -10 °C.

Ответ:

1) Понижение температуры замерзания раствора относительно растворителя воды можно вычислить по формуле:

$$\Delta t_{\text{3aM}} = t_{\text{3aM}}^{\text{H}_2\text{O}} - t_{\text{3aM}}^{\text{p-pa}} = K \cdot c_{\text{m}}$$

Так как температура замерзания воды 0 °C, то $\Delta t_{\rm зам} = 10$ °C.

2) Находим массу этиленгликоля:

$$c_{\rm m} = \frac{m_{\rm b}}{M \cdot L} = \frac{\Delta t_{\rm 3am}}{K} \ , \quad m_{\rm b} = \frac{\Delta t_{\rm 3am} \cdot M \cdot L}{K} = \frac{10 \; {\rm град} \cdot 62 \; {\rm г/моль} \cdot 1 \; {\rm кr}}{1,86 \; {\rm град \cdot kr/моль}} = 333,3 \; {\rm r}$$

Вычисления:	

5. Электролитическая диссоциация

Контрольные задания № 41-50

Приведите определения следующих понятий: электролита, неэлектролита, электролитической диссоциации. Укажите, какова роль растворителя в процессе электролитической диссоциации. Что такое степень и константа диссоциации, какова взаимосвязь между ними?

Лайте определение кислот, оснований, амфолитов и солей с точки зрения

взаимосвязь между ними? Дайте определение кисло электролитической диссоциации.	г, оснований,	амфолитов	И	солей	c	точки	зрения

Для своего задания в соответствии с таблицей 5 составьте уравнения электролитической диссоциации кислоты и основания (назовите их), а также уравнения возможных реакций между ними, приводящих к образованию средних, кислых и основных солей (назовите их). Реакции запишите в молекулярной и ионномолекулярной (полной и сокращенной) формах.

Пример. Исходные вещества: $Cu(OH)_2$ и H_2SO_4 . Составить уравнения возможных реакций с образованием средних, кислых и основных солей.

Ответ:

 $Cu(OH)_2$ — гидроксид меди (II), малорастворимое слабое *двухкислотное* основание, H_2SO_4 — серная кислота, сильная *двухосновная* кислота.

Следовательно, данная кислота и основание диссоциируют в две стадии (ступенчато), образуя по два вида основных и кислотных остатков:

I.
$$Cu(OH)_2 \rightleftharpoons CuOH^+ + OH^-$$

II. $CuOH^+ \rightleftharpoons Cu^{2+} + OH^-$
II. $HSO_4^- \rightarrow H^+ + SO_4^{2-}$

1) Образование средней соли:

$$Cu(OH)_2 + H_2SO_4 \rightarrow CuSO_4 + 2H_2O$$
 (молекулярная форма) сульфат меди (II)
$$Cu(OH)_2 + 2H^+ + SO_4^{2-} \rightarrow Cu^{2+} + SO_4^{2-} + 2H_2O \ (полная \ ионно-молекулярная \ форма)$$
 $Cu(OH)_2 + 2H^+ \rightarrow Cu^{2+} + 2H_2O \ (сокращенная \ ионно-молекулярная \ форма)$

2) Образование кислой соли:

$$Cu(OH)_2 + 2H_2SO_4 \rightarrow Cu(HSO_4)_2 + 2H_2O$$
 гидросульфат меди (II) $Cu(OH)_2 + 4H^+ + 2SO_4^{2-} \rightarrow Cu^{2+} + 2HSO_4^{2-} + 2H_2O$

3) Образование основной соли:

$$2Cu(OH)_2 + H_2SO_4 \rightarrow (CuOH)_2SO_4 \downarrow + 2H_2O$$
 сульфат гидроксомеди (II) $2Cu(OH)_2 + 2H^+ + SO_4^{2-} \rightarrow (CuOH)_2SO_4 \downarrow + 2H_2O$

Таблица 5

№ задачи	Основание	Кислота
41	Mg(OH) ₂	H ₂ SO ₄
42	Ca(OH) ₂	HNO ₃
43	Ba(OH) ₂	H_2CO_3
44	NaOH	H_2SO_4
45	LiOH	H ₃ PO ₄
46	Co(OH) ₂	HI
47	NH_4OH	H_2S
48	Sr(OH) ₂	HClO ₄
49	Fe(OH) ₂	HCl
50	КОН	H ₂ SiO ₃

Уравнения возможных реакций:	

6. Ионное произведение воды. Водородный показатель

Контрольные задания № 51-60

рОН, и какова связь между ними? Какими значениями рН характеризуются нейтральные, кислые и щелочные растворы? Какой характер среды наблюдается в водных растворах кислот, оснований, солей (учитывая возможность гидролиза соли)?

Для своего задания в соответствии с таблицей 6 вычислите рН раствора.

Вычисление рН ведут по следующим формулам:

1) Для сильной одноосновной кислоты:

$$[H^+] = C_M$$
 (кислоты), $pH = -\lg[H^+] = -\lg C_M$.

2) Для сильного однокислотного основания:

$$[OH^-] = C_{\rm M}$$
 (основания), $pOH = -\lg[OH^-] = -\lg C_{\rm M}$, $pH = 14 - pOH$.

3) Для слабой одноосновной кислоты:

$$[H^+] = \sqrt{K_{\text{кисл.}} \cdot c_{\text{M}}}$$
, где $K_{\text{кисл.}}$ – константа диссоциации слабой кислоты $^{1)}$. $pH = -\lg[H^+] = -\frac{1}{2} \left(\lg K_{\text{кисл}} + \lg c_{\text{M}}\right)$

4) Для слабого однокислотного основания:

$$[{
m OH}^-]=\sqrt{K_{
m och.}\cdot c_{
m M}}$$
 , где $K_{
m och.}$ – константа диссоциации слабого основания $^{1)}$. ${
m pOH}=-\lg[{
m OH}^-]=-\frac{1}{2}\left(\lg K_{
m och.}+\lg c_{
m M}\right)$, ${
m pH}=14-{
m pOH}$.

Таблица 6

№ задачи	Кислота или основание	Молярная концентрация ($C_{\rm M}$), моль/л
51	NaOH	5.10-4
52	HCl	3.10-2
53	NH ₄ OH	8·10 ⁻²
54	HNO_3	6.10-3
55	КОН	3.10-3
56	HCN	2·10 ⁻⁴
57	HI	7.10-1
58	CH ₃ COOH	4.10-2
59	CsOH	5.10-3
60	HBr	8·10 ⁻²

 $^{^{1)}}$ Значения констант диссоциации слабых электролитов приведены в таблице 2, см. раздел «Справочные данные».

	7. Окислительно-восстановительные реакции
	Контрольные задания № 61-70
	Что называют степенью окисления, окислительно-восстановительной реак
окисли	ителем, восстановителем, окислением, восстановлением?

Для своего задания в соответствии с таблицей 7 подберите коэффициенты к окислительно-восстановительной реакции, используя метод электронного баланса. Укажите процессы окисления и восстановления, окислитель и восстановитель.

Пример. Подберите коэффициенты к окислительно-восстановительной реакции, укажите процессы окисления и восстановления, окислитель и восстановитель:

$$Cr(NO_3)_3 + I_2 + KOH \rightarrow K_2CrO_4 + KI + KNO_3 + H_2O$$

Ответ:

Определим степени окисления атомов элементов и отметим те, которые изменяются в ходе реакции:

$$+3$$
 $Cr(NO_3)_3 + I_2 + KOH $\rightarrow K_2\underline{Cr}O_4 + K\underline{I} + KNO_3 + H_2O$$

Составим уравнения полуреакций окисления и восстановления и определим добавочные множители для уравнивания количества отданных и принятых электронов:

Расставим полученные коэффициенты-множители в уравнении реакции и уравняем количество других атомов:

$$2Cr(NO_3)_3 + 3I_2 + 16KOH \rightarrow 2K_2CrO_4 + 6KI + 6KNO_3 + 8H_2O$$

 $Cr(NO_3)_3$ – восстановитель, I_2 – окислитель.

Таблица 7

№ задания	Схема окислительно-восстановительной реакции
61	$CrCl_3 + H_2O_2 + NaOH \rightarrow Na_2CrO_4 + NaCl + H_2O$
62	$KMnO_4 + HCl \rightarrow MnCl_2 + Cl_2 + KCl + H_2O$
63	$Ca_3(PO_4)_2 + C + SiO_2 \rightarrow CaSiO_3 + P + CO$
64	$KMnO_4 + FeSO_4 + H_2O \rightarrow MnO_2 + Fe_2(SO_4)_3 + K_2SO_4 + KOH$
65	$Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2S + H_2O$
66	$Na_2S + K_2Cr_2O_7 + H_2SO_4 \rightarrow Na_2SO_4 + K_2SO_4 + Cr_2(SO_4)_3 + H_2O$
67	$KMnO_4 + H_2O_2 + H_2SO_4 \rightarrow MnSO_4 + O_2 + K_2SO_4 + H_2O$
68	$Cu + HNO_3 \rightarrow Cu(NO_3)_2 + NO + H_2O$
69	$KMnO_4 + KI + H_2SO_4 \rightarrow MnSO_4 + I_2 + K_2SO_4 + H_2O$
70	$KMnO_4 + KNO_2 + KOH \rightarrow K_2MnO_4 + KNO_3 + H_2O$

Выполнение задания:

8. Электродный потенциал. Гальванический элемент Контрольные задания № 71-80

Опишите механизм возникновения электродного потенциала металла, погруженного в водный раствор. Приведите выражение уравнения Нернста. От каких факторов зависит величина электродного потенциала? Что представляет собой ряд

окислительная активность их ионов в ряду напряжений? Дайте определение химического источника тока. Какие электрохимические процессы протекают на катоде и на аноде? Как вычисляют ЭДС гальванического элемента?

напряжений металлов? Как изменяется восстановительная активность металлов и

В соответствии с номером своего задания (таблица 8): а) укажите стрелкой направление реакции замещения, ответ обоснуйте; б) составьте схему гальванического элемента²⁾, определите катод и анод, запишите электродные процессы и вычислите стандартное значение электродвижущей силы (ЭДС), если электродами служат указанные в задании металлы.

Таблица 8

	<u> </u>
№ задания	Схема реакции, электроды гальванического элемента
71	$3CuCl_2 + 2Al = 2AlCl_3 + 3Cu$
/ 1	Zn и Mn, погруженные в растворы их солей с концентрацией 1 моль/л
72	$Zn(NO_3)_2 + 2Ag = 2AgNO_3 + Zn$
12	Сd и Cr, погруженные в растворы их солей с концентрацией 1 моль/л
73	$FeCl_2 + Cu = CuCl_2 + Fe$
13	Fe и Ni, погруженные в растворы их солей с концентрацией 1 моль/л
74	$FeCl_2 + Sn = SnCl_2 + Fe$
/4	Со и Сu, погруженные в растворы их солей с концентрацией 1 моль/л
75	$H_2 + ZnCl_2 = 2HCl + Zn$
7.5	Sn и Cu, погруженные в растворы их солей с концентрацией 1 моль/л
76	$Cu(NO_3)_2 + 2Ag = 2AgNO_3 + Cu$
70	Cu и Hg, погруженные в растворы их солей с концентрацией 1 моль/л
77	$2AgNO_3 + Pb = Pb(NO_3)_2 + 2Ag$
/ /	Fe и Sn, погруженные в растворы их солей с концентрацией 1 моль/л
78	$CuSO_4 + Ni = NiSO_4 + Cu$
70	Рb и Ag, погруженные в растворы их солей с концентрацией 1 моль/л
79	$Mg(NO_3)_2 + Zn = Zn(NO_3)_2 + Mg$
19	Ag и Zn, погруженные в растворы их солей с концентрацией 1 моль/л
80	$Hg(NO_3)_2 + 2Ag = 2AgNO_3 + Hg$
80	Fe и Mn, погруженные в растворы их солей с концентрацией 1 моль/л

_

²⁾ При составлении схемы гальванического элемента контакт металла с раствором обозначают одной вертикальной чертой, а электролитический ключ, обеспечивающий контакт между растворами солей металлов, – двумя вертикальными чертами. Слева записывают отрицательно заряженный электрод, справа – положительно заряженный.

Пример. a) Дана схема реакции: $Cr_2(SO_4)_3 + 3Cd = CdSO_4 + 2Cr$.

б) Гальванический элемент составлен из меди и цинка, погруженных в растворы их солей с концентрацией 1 моль/л.

Ответ:

а) Используя данные таблицы 4 «Электрохимический ряд напряжений металлов» в разделе «Справочные данные», можно сделать следующий вывод. Хром расположен в таблице выше кадмия и имеет более отрицательное значение стандартного электродного потенциала (E°). Следовательно, восстановительная активность хрома больше, чем у кадмия, поэтому реакция должна самопроизвольно протекать в сторону образования металлического кадмия:

$$Cr_2(SO_4)_3 + 3Cd \leftarrow CdSO_4 + 2Cr$$

б) В ряду напряжений металлов цинк расположен выше меди, имеет более отрицательное значение E^{o} и заряжен отрицательно «—», тогда у меди заряд «+». Таким образом, схема гальванического элемента выглядит так:

$$(-)$$
 Zn \mid Zn²⁺ \mid Cu²⁺ \mid Cu $(+)$

Замыкание внешней цепи вызовет направленное движение электронов от цинкового электрода к медному и протеканию электрохимических процессов:

Стандартная ЭДС (ΔE°) вычисляется как разница между потенциалами катода и анода, которые при выполнении условия задачи равны стандартным электродным потенциалам металлов (см. табл. 4 в разделе «Справочные данные»):

$$\Delta E^{o} = E^{o}(Cu^{2+}/Cu) - E^{o}(Zn^{2+}/Zn) = 0.34 \text{ B} - (-0.76 \text{ B}) = 1.1 \text{ B}$$

Выполнение задания:

		9. Электро	ли3	
	К	онтрольные задан	ия № 81-90	
катионов м ряду напря:	еталлов на катоде кений. На какие г	в зависимости от пруппы можно поде	стролиз». Охарактери их расположения в эл елить анионы солей п дея. Что называют «ві	ектрохимическо о их способнос

В соответствии с данными таблицы 9 решите задачу.

Запишите электродные процессы и вычислите массу металла, восстановившегося на катоде, если электролизу подвергается водный раствор соли. Параметры электролиза указаны в задании.

Таблица 9

№ задания	Параметры электролиза
81	Нитрат железа (II), анод инертный.
01	Сила тока 15 А, время электролиза 30 минут, выход железа по току 80%.
82	Хлорид железа (II), анод растворимый (железный).
02	Сила тока 20 А, время электролиза 20 минут, выход железа по току 90%.
83	Сульфат никеля (II), анод инертный.
0.5	Сила тока 6 А, время электролиза 1 час, выход никеля по току 95%.
84	Хлорид никеля (II), анод растворимый (никелевый).
04	Сила тока 12 А, время электролиза 40 минут, выход никеля по току 88%.
85	Сульфат кадмия (II), анод растворимый (кадмиевый).
83	Сила тока 8 А, время электролиза 35 минут, выход кадмия по току 92%.
86	Сульфат олова (II), анод инертный.
80	Сила тока 12 А, время электролиза 30 минут, выход олова по току 78%.
87	Хлорид олова (II), анод растворимый (оловянный).
87	Сила тока 5 А, время электролиза 2 часа, выход олова по току 85%.
88	Сульфат железа (II), анод инертный.
00	Сила тока 20 А, время электролиза 40 минут, выход железа по току 87%.
89	Сульфат цинка, анод растворимый (цинковый).
07	Сила тока 7 А, время электролиза 30 минут, выход цинка по току 92%.
90	Сульфат меди (II), анод растворимый (медный).
90	Сила тока 20 А, время электролиза 30 минут, выход меди по току 100%.

Пример. Дано: нитрат хрома (III), анод растворимый (хромовый). Сила тока 14A, время электролиза 30 минут, выход хрома по току 95%.

Ответ:

Уравнение диссоциации нитрата хрома (III): $Cr(NO_3)_3 \rightarrow Cr^{3+} + 3NO_3^-$

На электродах будут протекать процессы³⁾:

На катоде (−) : восстановление Cr^{3+} , H_2O $Cr^{3+} + 3\bar{e} \to Cr$ $2H_2O + 2\bar{e} \to H_2\uparrow + 2OH^-$ **На аноде** (+) : окисление материала анода (Cr), H_2O $Cr - 3\bar{e} \to Cr^{3+}$ $2H_2O - 4\bar{e} \to O_2\uparrow + 4H^+$

Течение анодных и катодных процессов подчиняется закону Фарадея:

$$m = \frac{M \cdot I \cdot \tau}{n \cdot F}$$

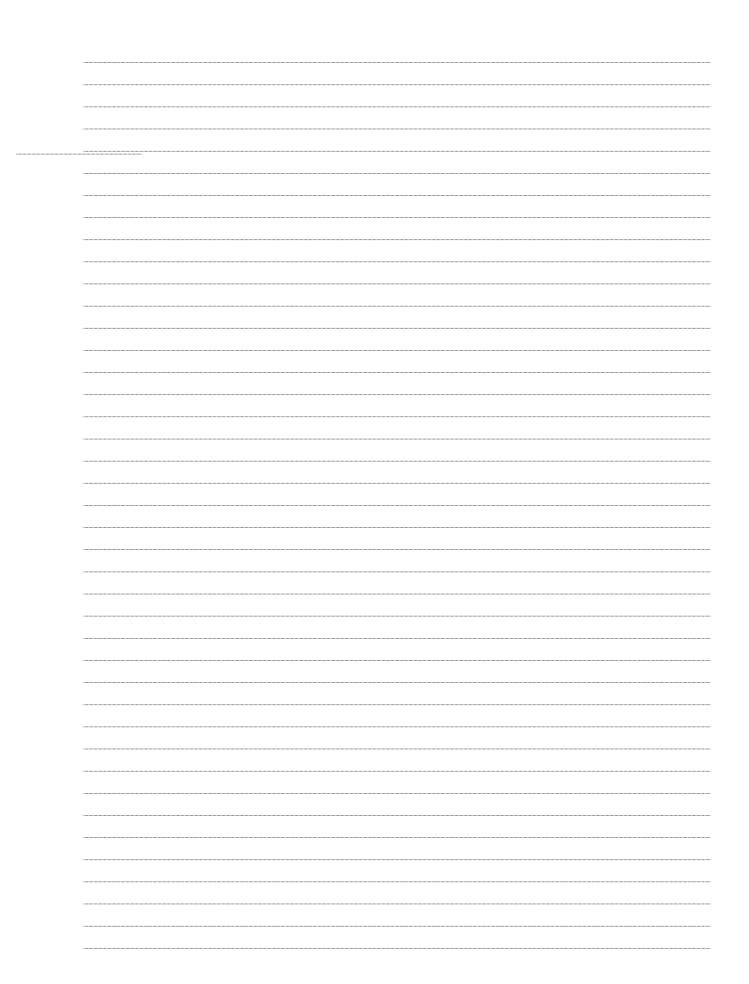
где m — масса вещества, выделивщегося на электроде (г), M — молярная масса металла (г/моль), I — сила тока (A), τ — время электролиза (c), n — число электронов, участвующих в процессе, F — постоянная Фарадея 96 500 Кл/моль.

На практике масса металла, выделяющаяся на катоде, из-за побочных процессов, отличается от массы вычисленной теоретически. Выход по току (η) представляет собой долю массы металла, выделившуюся на катоде в реальности ($m_{\rm пр.}$) от массы, вычисленной по закону Фарадея ($m_{\rm reop.}$).

$$\eta = \frac{m_{\rm np.}}{m_{\rm reop.}} \cdot 100\%$$

Используя закон Фарадея найдем $m_{\text{теор}}$:

$$m_{\text{теор}} = \frac{52 \text{ г/моль} \cdot 14 \text{ A} \cdot (30 \cdot 60) \text{ c}}{3 \cdot 96500 \text{ Кл/моль}} = 4,53 \text{ г}$$


Зная выход по току найдем $m_{\rm np.}$:

$$m_{\rm np} = \frac{4,53 \, \Gamma \cdot 95 \, \%}{100\%} = 4,30 \, \Gamma$$

Выполнение задания:

³⁾ Электрохимическое поведение катионов металлов и анионов солей при электролизе приведено в табл. 4 и 5 в разделе «Справочные данные».

	10. Органические соединения. Полимеры
	Контрольные задания № 91-100
гомоло в соста	Углеводороды как представители органических соединений. Что та огический ряд? Природные источники углеводородов. Какие углеводороды вхо моторного топлива, бензина, дизеля?
	Что такое полимеры? В чем суть реакций полимеризации и поликонденсации?

Для своего варианта выполните задание в соответствии с таблицей 10:

а) рассчитайте октановое число для смеси углеводородов,

б) напишите структурную формулу полимера, схему его получения (из мономеров), охарактеризуйте его свойства и области применения в народном хозяйстве.

Таблица 10

№ задания	Состав смеси углеводородов, полимер и его мономер
91	Изооктан 150 г + n-гептан 90 г Поливинилацетат (ПВА), мономером является винилацетат $CH_2=CH-O-C-CH_3$
92	Изооктан 140 г + n-гептан 175 г Полиизопрен (природный каучук), мономером является $CH_2=CH-C=CH_2$ 2-метилдивинил или изопрен CH_3
93	Изооктан 260 г + n-гептан 120 г Полиэтилен, мономером является этен (этилен) $CH_2 = CH_2$
94	Изооктан 130 г + n-гептан 80 г Полипропилен, мономером является пропен (пропилен) $CH_2 = CH - CH_3$
95	Изооктан 170 г + n-гептан 100 г Политетрафторэтилен (тефлон), мономером является тетрафторэтилен $CF_2 = CF_2$
96	Изооктан 250 г + n-гептан 150 г Поливинилхлорид (ПВХ), мономером является $CH_2 = CH$ хлорэтен или винилхлорид CI
97	Изооктан 140 г + n-гептан 170 г Полиакрилонитрил (ПАН), мономером является винилцианид или акрилонитрил $CH_2 = CH - C \equiv N$
98	Изооктан 160 г + n-гептан 175 г Полиметилметакрилат (оргстекло), мономером $CH_2 = C - C - O - CH_3$ является метилметакрилат H_3C O
99	Изооктан 240 г + n-гептан 100 г Капрон (полиамидное волокно), мономером является капролактам — циклическая форма аминокапроновой кислоты $H_2N - (CH_2)_5 - COOH$
100	Изооктан 120 г + n-гептан 100 г Полистирол, мономером является стирол $CH_2 = CH$

Пример. а) Дана смесь: 360 г изооктана + 40 г п-гептана.

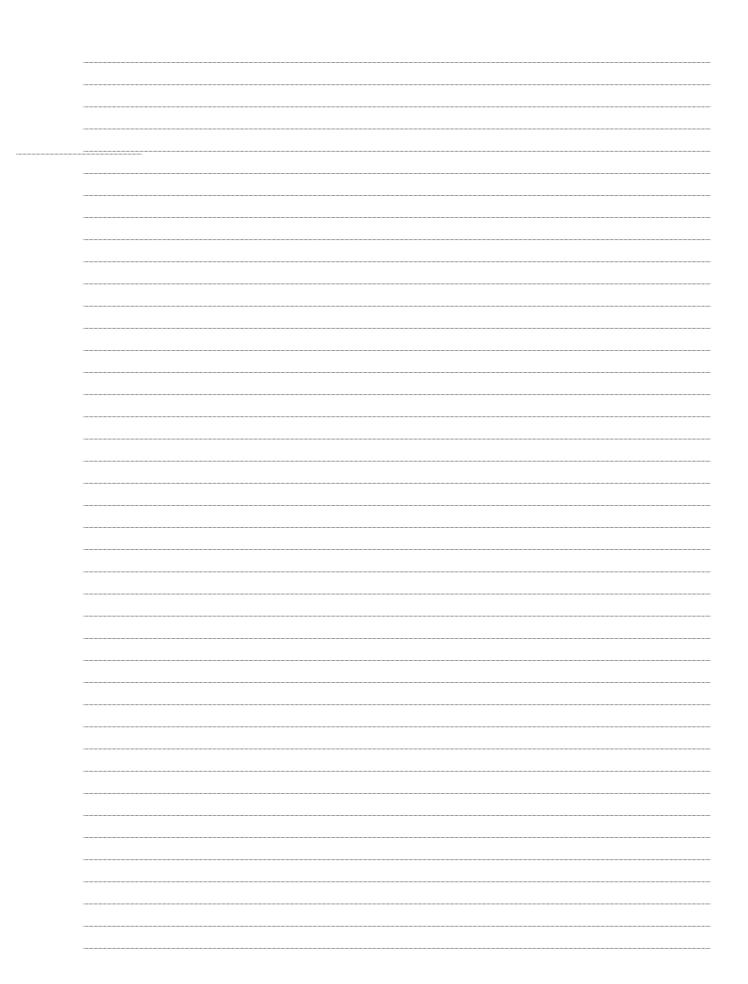
б) Полидивинил (дивиниловый каучук), мономер: дивинил.

Ответ:

а) Октановое число ОЧ – это массовая доля изооктана в его смеси с n-гептаном, которая является эталонной для данного октанового числа.

$$OH = \frac{m_{\text{изооктана}}}{m_{\text{смеси}}} \cdot 100\% = \frac{360 \text{ }\Gamma}{360 \text{ }\Gamma + 40 \text{ }\Gamma} \cdot 100\% = 90\%$$

Таким образом, ОЧ смеси равно 90.


б) Структурная формула дивинила или бутадиена

$$CH_2 = CH - CH = CH_2$$

При получении полидивинила путем полимеризации раскрываются обе двойные связи, предоставляя свободные валентности для наращивания полимерной цепи. Кроме того, за счет близко расположенных свободных валентностей в элементарном звене полимера между вторым и третьим атомами углерода возникает новая двойная связь. Таким образом, схема полимеризации дивинила:

$$n CH_2 = CH - CH = CH_2 \rightarrow (-CH_2 - CH = CH - CH_2 -)_n$$

Данный полимер называется дивиниловым (бутадиеновым) каучуком. Как и другие каучуки, обладает высокими эластическими свойствами. Синтезируется в промышленных масштабах, используется в производстве резинотехнических изделий, в частности автомобильных покрышек.

Варианты контрольных заданий

					1						
dфиШ	Номера заданий										
00	1	11	21	31	41	51	61	71	81	91	
01	2	12	22	32	42	52	62	72	82	92	
02	3	13	23	33	43	53	63	73	83	93	
03	4	14	24	34	44	54	64	74	84	94	
04	5	15	25	35	45	55	65	75	85	95	
05	6	16	26	36	46	56	66	76	86	96	
06	7	17	27	37	47	57	67	77	87	97	
07	8	18	28	38	48	58	68	78	88	98	
08	9	19	29	39	49	59	69	79	89	99	
09	10	20	30	40	50	60	70	80	90	100	
10	1	12	23	34	45	56	67	78	89	99	
11	2	13	24	35	46	57	68	79	90	98	
12	3	14	25	36	47	58	69	80	81	97	
13	4	15	26	37	48	59	70	71	82	96	
14	5	16	27	38	49	60	61	72	83	95	
15	6	17	28	39	50	51	62	73	84	94	
16	7	18	29	40	41	52	63	74	85	93	
17	8	19	30	31	42	53	64	75	86	92	
18	9	20	21	32	43	54	65	76	87	91	
19	10	11	22	33	44	55	66	77	88	99	
20	1	13	25	35	46	57	68	79	90	100	
21	2	14	26	36	47	58	69	80	89	91	
22	3	15	27	37	48	59	70	71	88	92	
23	4	16	28	38	49	60	67	72	87	93	
24	5	17	29	39	50	56	66	73	86	94	
25	6	18	30	40	49	55	65	74	85	95	
26	7	19	24	31	48	54	64	75	84	96	
27	8	20	23	32	47	53	63	76	83	97	
28	9	11	22	33	46	52	62	77	82	98	
29	10	12	21	34	45	51	61	78	81	99	
30	1	14	27	36	45	53	67	71	90	98	
31	2	15	28	37	46	51	63	74	89	100	
32	3	16	29	38	47	55	64	72	88	91	

Щифр	Номера заданий											
33	4	17	30	39	48	56	65	73	82	97		
34	5	18	26	40	49	57	62	75	81	99		
35	6	19	25	35	50	58	61	76	83	92		
36	7	20	21	34	44	59	68	78	87	93		
37	8	11	22	33	43	60	66	77	84	95		
38	9	12	23	32	41	54	69	80	85	96		
39	10	13	24	31	42	55	70	79	86	94		
40	1	18	24	36	45	54	63	72	81	100		
41	2	20	25	40	44	53	62	71	90	99		
42	3	11	26	39	43	52	61	73	89	98		
43	4	12	27	38	42	51	64	74	88	97		
44	5	13	28	37	41	60	65	76	87	96		
45	6	6 14 29 31				59	66	75	86	95		
46	7	15	30	35	47	58	67	78	85	94		
47	8	16	21	34	48	57	68	77	84	93		
48	9	17	22	33	49	56	70	79	83	92		
49	10	18	23	32	50	55	69	80	82	91		
50	1	19	28	37	48	59	68	79	84	93		
51	2	18	27	37	47	58	69	80	83	92		
52	3	17	26	35	46	57	70	78	84	93		
53	4	16	25	34	45	56	67	77	85	94		
54	5	14	24	33	44	55	66	76	86	95		
55	6	15	23	32	43	54	65	74	87	96		
56	7	13	22	31	42	53	64	75	88	97		
57	8	12	21	38	50	52	63	71	89	98		
58	10	11	30	39	41	51	62	72	90	99		
59	9	19	29	40	49	60	61	73	81	100		
60	1	20	23	35	47	52	66	74	88	95		
61	1	20	25	34	47	52	63	78	89	91		
62	9	19	24	35	48	53	62	79	88	92		
63	8	18	23	36	49	54	61	80	87	93		
64	7	17	22	37	50	55	70	77	86	94		
65	6	16	21	38	46	51	65	76	85	95		
66	5	15	26	39	44	56	67	74	84	96		
67	4	14	27	40	45	57	66	75	83	97		

Щифр	Номера заданий										
68	3	13	28	31	43	58	69	71	82	98	
69	2	12	30	32	41	59	68	72	81	99	
70	1	11	29	33	42	60	64	73	90	100	
71	5	11	26	33	42	51	69	77	86	95	
72	6	12	27	34	49	52	70	78	87	96	
73	7	13	28	35	48	53	61	79	88	97	
74	8	14	29	36	41	54	62	80	89	98	
75	9	15	30	37	42	55	63	71	90	99	
76	10	16	35	38	43	56	64	72	81	100	
77	4	17	24	39	44	57	65	73	82	91	
78	3	18	23	40	45	58	66	74	83	92	
79	2	19	22	31	46	59	67	75	84	93	
80	1	20	21	32	47	60	68	76	85	94	
81	7	14	30	39	48	57	68	79	81	99	
82	8	15	29	31	49	58	69	80	82	100	
83	9	16	28	32	50	59	70	78	83	91	
84	10	17	21	33	41	60	61	77	84	92	
85	1	18	22	34	42	51	62	76	85	93	
86	2	19	23	35	43	52	63	71	86	94	
87	3	20	24	36	44	53	64	72	87	95	
88	4	11	25	37	45	54	65	73	88	96	
89	5	12	26	38	46	55	66	74	89	97	
90	6	13	27	40	47	56	67	75	90	98	
91	8	14	29	31	49	60	61	74	82	93	
92	9	15	28	32	41	58	62	75	83	94	
93	10	16	21	33	42	57	63	76	84	95	
94	1	17	22	34	43	51	64	77	85	96	
95	2	18	23	35	44	52	65	78	86	97	
96	3	19	24	36	45	53	66	79	87	98	
97	4	20	25	37	46	54	67	80	88	99	
98	5	13	26	38	47	55	69	71	89	100	
99	6	12	27	39	48	56	70	73	90	92	

Справочные данные

Таблица 1
Порядковые номера, атомные массы и названия элементов
Периодической системы (без лантаноидов и актиноидов)

Порядковый номер	Символ элемента	Русское и латинское (приведено в скобках) название элемента	Атомная масса, Да	Порядковый номер	Символ элемента	Русское и латинское (приведено в скобках) название элемента	Атомная масса, Да
1	Н	Водород (гидрогениум)	1,008	18	Ar	Аргон	39,95
2	Не	Гелий	4,003	19	K	Калий	39,10
3	Li	Литий	6,941	20	Ca	Кальций	40,08
4	Be	Бериллий	9,012	21	Sc	Скандий	44,96
5	В	Бор	10,81	22	Ti	Титан	47,87
6	C	Углерод (карбониум)	12,01	23	V	Ванадий	50,94
7	N	Азот (нитрогениум)	14,01	24	Cr	Хром	52,00
8	О	Кислород (оксигениум)	16,00	25	Mn	Марганец	54,94
9	F	Фтор	19,00	26	Fe	Железо (феррум)	55,84
10	Ne	Неон	20,18	27	Co	Кобальт	58,93
11	Na	Натрий	22,99	28	Ni	Никель	58,69
12	Mg	Магний	24,30	29	Cu	Медь (купрум)	63,55
13	Al	Алюминий	26,98	30	Zn	Цинк	65,41
14	Si	Кремний (силициум)	28,08	31	Ga	Галлий	69,72
15	P	Фосфор (фосфорос)	30,97	32	Ge	Германий	72,64
16	S	Сера (сульфур)	32,06	33	As	Мышьяк (арсеникум)	74,92
17	Cl	Хлор	35,45	34	Se	Селен	78,96

Порядковый номер	Символ элемента	Русское и латинское (приведено в скобках) название элемента	Атомная масса, Да
35	Br	Бром	79,90
36	Kr	Криптон	83,80
37	Rb	Рубидий	85,47
38	Sr	Стронций	87,62
39	Y	Иттрий	88,90
40	Zr	Цирконий	91,22
41	Nb	Ниобий	92,91
42	Mo	Молибден	95,94
43	Tc	Технеций	[98]
44	Ru	Рутений	101,1
45	Rh	Родий	102,9
46	Pd	Палладий	106,4
47	Ag	Серебро (аргентум)	107,9
48	Cd	Кадмий	112,4
49	In	Индий	114,8
50	Sn	Олово (станум)	118,7
51	Sb	Сурьма (стибиум)	121,8
52	Te	Теллур	127,6
53	I	Иод	126,9
54	Xe	Ксенон	131,3

Порядковый номер	Символ элемента	Русское и латинское (приведено в скобках) название элемента	Атомная масса, Да
55	Cs	Цезий	132,9
56	Ba	Барий	137,3
57	La	Лантан	138,9
		58-71 - лантаноиды	
72	Hf	Гафний	178,5
73	Ta	Тантал	180,9
74	W	Вольфрам	183,8
75	Re	Рений	186,2
76	Os	Осмий	190,2
77	Ir	Иридий	192,2
78	Pt	Платина	195,1
79	Au	Золото (аурум)	197,0
80	Hg	Ртуть (гидраргирум)	200,6
81	T1	Таллий	204,4
82	Pb	Свинец (плюмбум)	207,2
83	Bi	Висмут	209,0
84	Po	Полоний	[209]
85	At	Астат	[210]
86	Rn	Радон	[222]
87	Fr	Франций	[223]

Порядковый номер	Символ элемента	Русское и латинское (приведено в скобках) название элемента	Атомная масса, Да
88	Ra	Радий	[226]
89	Ac	Актиний	[227]
	9	0-103 - актиноиды	
104	Rf	Резерфордий	[261]
105	Db	Дубний	[262]

Порядковый номер	Символ элемента	Русское и латинское (приведено в скобках) название элемента	Атомная масса, Да
106	Sg	Сиборгий	[266]
107	Bh	Борий	[264]
108	Hs	Хассий	[277]
109	Mt	Мейтнерий	[268]
110	Ds	Дармштадтий	[271]

Таблица 2 Константы диссоциации ($K_{\rm d}$) слабых электролитов при 25°C (в скобках указана ступень диссоциации).

Электролит	Формула	K_{A}
Азотистая кислота	HNO_2	$4,3 \cdot 10^{-4}$
Борная кислота	H_3BO_3	5,8·10 ⁻¹⁰ (I)
Гидроксид аммония	NH ₄ OH	1,8 · 10 ⁻⁵
Кремневая кислота	H ₂ SiO ₃	2,2 ·10 ⁻¹⁰ (I)
		1,6·10 ⁻¹² (II)
Муравьиная кислота	НСООН	1,8·10 ⁻⁴
Сернистая кислота	H_2SO_3	$1,5\cdot 10^{-2}$ (I)
		$1,0.10^{-7}$ (II)
Сероводородная кислота	H_2S	$9,5\cdot10^{-8}$ (I)
		1,0·10 ⁻¹⁴ (II)
Угольная кислота	H_2CO_3	4,3·10 ⁻⁷ (I)
		$4,7\cdot10^{-11}$ (II)
Уксусная кислота	CH ₃ COOH	1,7·10 ⁻⁵
Фосфорная кислота	H_3PO_4	$7,1\cdot 10^{-3}$ (I)
		$6.2 \cdot 10^{-8}$ (II)
		5,0·10 ⁻¹⁰ (III)
Фтороводородная кислота	HF	6,6.10-4
Хлорноватистая кислота	HOC1	3,9·10 ⁻⁸
Циановодородная кислота	HCN	5,0·10 ⁻¹⁰

Таблица 3. Растворимость кислот, оснований и солей в воде при 20°С

	$_{\downarrow}\mathrm{H}$	Li	\mathbf{K}^{\dagger}	Na^{\dagger}	NH,⁺	Ba^{2+}	Ca^{2+}	${ m Mg}^{2+}$	Sr^{2+}	Λl^{3+}	Cr^{3+}	Fe ²⁺	Fe ³⁺	N_1^{2+}	C_0^{2+}	Mn^{2+}	Z_n^{2+}	$A_{\mathbf{g}^+}$	${ m Hg}^{2+}$	Pb^{2+}	Sn^{2+}	Cu^{2+}
- H0		Ь	Ь	Ь	Ъ	Ъ	Σ	Ŧ	Σ	H	Ŧ	王	Ξ	Ξ	Ŧ	Ŧ	Ŧ		,	H	Ξ	Ŧ
F-	Ь	Σ	Ь	Ь	Ъ	Σ	Ŧ	王	H	M	Ŧ	王	Ξ	Ъ	Ь	Ь	Ь	۵	,	H	Ь	Ь
CI_	Ь	Ь	Ь	Ь	Ъ	Ъ	Ь	Ь	Ь	Ь	Ь	Д	Ь	Ь	Ь	Ь	Ь	王	Ь	M	Ь	Ь
Br-	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Н	M	M	Ь	Ь
_I	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	d	Ь	Ь	-	Ь	Ь	Ь	Ь	Н	Н	Н	M	-
S^{J-}	Ь	Ь	Р	Ь	Ь	-	-	-	Н	-	-	Н	-	Н	Н	Н	Н	Н	Н	Н	Н	Н
HS-	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	-	-	-	-	-	Н	-	-	-	-	-	-	-
50_3^{2}	Ь	Ь	Ь	Ь	Ь	Н	Н	M	Н	-	-	Н	-	Н	Н	-	M	Н	Н	Н	-	-
HSO3 -	Ь	-	Ь	Ь	d	d	Ь	d	d	-	-	-	-	-	-	-	-	-	-	-	-	-
SO_{4}^{7}	Ь	Ь	Ь	Ь	Ь	Н	M	M	Н	d	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Σ	-	Н	Ь	Ь
- 40SH	Ь	Ь	Р	Ь	Ь	-	•	-	-	-	-	•	•	-	-	-	-		-	Н	-	•
NO_3	Ь	Ь	Р	Ь	Ь	Ь	Ь	Ь	Ь	d	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	-	Ь
NO_2	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	-	-	,	-	Ь	M	-	-	Σ	-	-	-	,
PO_4^3	Ь	Н	Р	Ь	-	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
$\mathrm{HPO_4}^{2}$	Ь	-	Р	Ь	Ь	Н	Н	M	Н	-	-	Н	-	-	-	Н	-	-		M	Н	-
$H_2PO_4^-$	Ь	Ь	Р	Ь	Ь	Ь	Р	Ь	Ь	-	-	Ь	-	1	-	Р	Р	Ь	-	-	-	-
$\mathrm{CO_{3}^{2-}}$	Ь	Ь	Р	Ь	Ь	Н	Н	Н	Н	-	-	Н	-	Н	Н	Н	Н	Н	-	Н	-	Н
HCO3-	Ь	Ь	Р	Р	Ь	Ь	Р	Ь	Р	-	-	Ь	-	-	-	-	-	-	-	Р	-	-
CH ₃ COO-	Ь	Ь	Р	Р	Ь	Ь	Р	Ь	Р	-	-	Ь	-	Ь	Р	Р	Р	Ь	Р	Р	-	Ь
SiO_3^{2}	H	工	Р	Ь	•	王	Н	Ŧ	Н	-	-	Ŧ	-	1	-	Н	Ŧ	-	-	Н	-	ı
 Р – растворяется (более 1г в 100г воды), 	воря	CICA	(60)	тее 1	гв 100	јг вод	(E)	М – мало растворяется (от 0,1 до 1г в	ио ра	actbo	ряетс	1 (or),1 zo	lr B	100r	100r Bogsi),						
 Н – не растворяется (менее 1г в 100г воды), (-) 	acTB0	ряе) ESI	мене	e lr B	100r	воды)	÷	разд	агает	– разлагается в воде или не существует	оде и	ии не	Cy III	CIBye	H						

 Таблица 4.

 Электрохимический ряд напряжений металлов

Поведение Ме ⁿ⁺ при электролизе	Электрод Ox / Red	Электродная реакция $\mathbf{Ox} + \mathbf{n\bar{e}} \rightarrow \mathbf{Red}$	E° , B	
4)	Li +/ Li	$\text{Li}^+ + \bar{\text{e}} \rightarrow \text{Li}$	-3,04	
год(Cs^+/Cs	$C_S^+ + \bar{e} \rightarrow C_S$	-3,03	
$Kato_{J}$ $H = 7$	$\mathrm{Rb}^{+}/\mathrm{Rb}$	$Rb^+ + \bar{e} \rightarrow Rb$	-2,98	
г на (р ! < 7	K^+/K	$K^+ + \bar{e} \rightarrow K$	-2,92	1
Me^{n+} не восстанавливаются на катоде $2H_2O+2\ \bar{e} \to H_2\uparrow+OH^-\ (pH=7)$ $2H^++2\ \bar{e} \to H_2\uparrow\ (pH<7)$	$\mathrm{Ba}^{2+}/\mathrm{Ba}$	$Ba^{2+} + 2\bar{e} \to Ba$	-2,90	
ван + О 2↑ ($\operatorname{Fr}^+/\operatorname{Fr}$	$Fr^+ + \bar{e} \rightarrow Fr$	-2,92	
авли $H_2 \uparrow$ \rightarrow H	Sr^{2+}/Sr	$\operatorname{Sr}^{2+} + 2\bar{\operatorname{e}} \to \operatorname{Sr}$	-2,90	
—— анав → Е ē —	Ca^{2+}/Ca	$\operatorname{Ca}^{2+} + 2\bar{\operatorname{e}} \to \operatorname{Ca}$	-2,87	
е восстан;) + 2 ē → 2H ⁺ + 2 ē	Na +/ Na	$Na^+ + \bar{e} \rightarrow Na$	-2,71	I
; B00 + 2 ;H ⁺	$\mathrm{Mg}^{2+}/\mathrm{Mg}$	$Mg^{2+} + 2\bar{e} \rightarrow Mg$	-2,36	активности металла
	$\mathrm{Be}^{2+}/\mathrm{Be}$	$Be^{2+} + 2\bar{e} \to Be$	-1,85	гета
Ме ^п 2F	Al^{3+}/Al	$A1^{3+} + 3\bar{e} \to A1$	-1,66	1 W
	Ti ²⁺ /Ti	$\mathrm{Ti}^{2+} + 2\bar{\mathrm{e}} \longrightarrow \mathrm{Ti}$	-1,63	СТК
7)	$\mathrm{Mn}^{2+}/\mathrm{Mn}$	$\operatorname{Mn}^{2+} + 2\bar{\operatorname{e}} \to \operatorname{Mn}$	-1,18	ВНС
$2H_2O + 2 \overline{e} \rightarrow H_2\uparrow + OH^- (pH=7)$ $2H^+ + 2 \overline{e} \rightarrow H_2\uparrow (pH < 7)$	Cr ²⁺ /Cr	$\operatorname{Cr}^{2+} + 2\bar{\operatorname{e}} \to \operatorname{Cr}$	-0,85	КТИ
(p) _ (y) _ < 7	Zn^{2+}/Zn	$\operatorname{Zn}^{2+} + 2\bar{\operatorname{e}} \to \operatorname{Zn}$	-0,76	
Ме ЭН .	Cr ³⁺ /Cr	$\operatorname{Cr}^{3+} + 3\bar{\operatorname{e}} \to \operatorname{Cr}$	-0,74	ной
+ C + C	Fe^{2+}/Fe	$Fe^{2+} + 2\bar{e} \rightarrow Fe$	-0,44	ель
nē H ₂ ↑	$\operatorname{Cd}^{2+}/\operatorname{Cd}$	$\operatorname{Cd}^{2+} + 2\bar{\operatorname{e}} \to \operatorname{Cd}$	-0,40	ВИТ
n+ +	$\operatorname{Co}^{2+}/\operatorname{Co}$	$\operatorname{Co}^{2+} + 2\bar{\operatorname{e}} \to \operatorname{Co}$	-0,28	ано
Me 2 ē + 2	Ni ²⁺ /Ni	$Ni^{2+} + 2\bar{e} \rightarrow Ni$	-0,25	CCT
, + H'	$\operatorname{Sn}^{2+}/\operatorname{Sn}$	$\operatorname{Sn}^{2+} + 2\bar{\operatorname{e}} \to \operatorname{Sn}$	-0,14	BO
H ₂ C	Pb^{2+}/Pb	$Pb^{2+} + 2\bar{e} \rightarrow Pb$	-0,13	ние
2]	Fe^{3+}/Fe	$Fe^{3+} + 3\bar{e} \rightarrow Fe$	-0,04	14el
	$2\mathrm{H}^+/\mathrm{H}_2$	$2H^+\!+2\bar{e}\to H_2$	0,00	Увеличение восстановительной
1e	Cu ²⁺ /Cu	$Cu^{2+} + 2\bar{e} \to Cu$	0,34	$\mathcal{N}_{\mathbf{I}}$
$\mathrm{Me^{n+}} + \mathrm{n}\bar{\mathrm{e}} ightarrow \mathrm{Me}$	Cu +/ Cu	$Cu^+ + \bar{e} \rightarrow Cu$	0,52	
1ē –	Ag^+/Ag	$Ag^+ + \bar{e} \rightarrow Ag$	0,80	
+ +	Hg^{2+}/Hg	$Hg^{2+} + 2\bar{e} \to Hg$	0,85	
Te ⁿ⁺	Pt ²⁺ /Pt	$Pt^{2+} + 2\bar{e} \to Pt$	1,28	
	Au +/ Au	$Au^+ + \bar{e} \rightarrow Au$	1,50	

Поведение анионов солей при электролизе водных растворов

Вид аниона	Электродный процесс
Анионы бескислородных кислот S ²⁻ , Cl ⁻ , Br ⁻ , I ⁻ (исключение F ⁻)	Окисление аниона до простого вещества: Анион – $n\bar{e} \rightarrow $ Неметалл
Анионы кислородсодержащих кислот NO_3^- , SO_4^{2-} , PO_4^{3-} , CO_3^{2-} , а также F^-	Не окисляются, происходит окисление молекул воды: $2H_2O - 4\bar{e} \rightarrow O_2 \uparrow + 4H^+$

Рекомендуемая литература

- 1. Глинка Н. Л. Общая химия : [учебное пособие для студентов нехимических специальностей вузов] / Н.Л. Глинка .— 30-е изд, переизд. Москва : КноРус, 2009 .— 746 с.
- 2. Хомченко Г. П. Неорганическая химия: учебник для студентов сельско-хозяйственных вузов / Г. П. Хомченко, И. К. Цитович. СПб.: Гранит, 2009. 464 с.
- 3. Павлов Н.Н. Общая и неорганическая химия [электронный ресурс]: учебник для технологических и химико-технологических направлений подготовки бакалавров и магистров / Н.Н. Павлов .— Изд. 3-е, испр. и доп. Санкт-Петербург ; Москва ; Краснодар : Лань, 2011 .— 495 с.
- 4. Перегончая, О. В. Общая химия [электронный ресурс]: учебное пособие / [О. В. Перегончая] ; Воронежский государственный аграрный университет .— Воронеж : Воронежский государственный аграрный университет, 2013 .— 162 с.
- 5. Ахметов, Н. С.Общая и неорганическая химия [электронный ресурс] : 2018-07-12 / Ахметов Н. С., .— 9-е изд., стер. : Лань, 2018 .— 744 с.
- 6. Базы данных и интернет-источники информации http://www.xumuk.ru/encyklopedia, http://ru.wikipedia.org/wiki, http://chemistry.vsau.ru

Содержание

1. Основные понятия и законы химии	3
2. Номенклатура и химические свойства неорганических соединений	
3. Способы выражения состава растворов	
4. Коллигативные свойства растворов	
5. Электролитическая диссоциация	
6. Ионное произведение воды. Водородный показатель	19
7. Окислительно-восстановительные реакции	21
8. Электродный потенциал. Гальванический элемент	
9. Электролиз	27
10. Органические соединения. Полимеры	30
Варианты контрольных заданий	35
Справочные данные	38
Рекомендуемая литература	43